43 research outputs found

    Comparison of Most Popular Buildings Performance Simulation Tools

    Get PDF
    A critical procedure in sustainable building design is the building energy performance assessment, which has significant implications for global energy consumption and climate change. This study compares three simulation software programs for a photovoltaic system on a building’s roof. The low-rise residential buildings in three East Mediterranean cities (Amman, Mafraq, and Aqaba) represent moderate drywarm, semiarid, and humid subtropical climate zones were compared using three simulation software programs (IES-VE, DesignBuilder, REVIT) for a typical building with PV on the roof and the second scenario without a PV system installed on the roof. This investigation aims to evaluate the shading effect of the PV system on a building’s roof structure by calculating the total electrical load required to maintain thermal comfort inside the building. The final results showed significant discrepancies between the three software for the base building design and the PV system on the roof, with a range of around 50 %. This highlights the importance of evaluating and calibrating different simulation tools and using them with a great deal of caution

    The Significance of Wind Turbines Layout Optimization on the Predicted Farm Energy Yield

    Get PDF
    Securing energy supply and diversifying the energy sources is one of the main goals of energy strategy for most countries. Due to climate change, wind energy is becoming increasingly important as a method of CO2-free energy generation. In this paper, a wind farm with five turbines located in Jerash, a city in northern Jordan, has been designed and analyzed. Optimization of wind farms is an important factor in the design stage to minimize the cost of wind energy to become more competitive and economically attractive. The analyses have been carried out using the WindFarm software to examine the significance of wind turbines’ layouts (M, straight and arch shapes) and spacing on the final energy yield. In this research, arranging the turbines facing the main wind direction with five times rotor diameter distance between each turbine has been simulated, and has resulted in 22.75, 22.87 and 21.997 GWh/year for the M shape, Straight line and Arch shape, respectively. Whereas, reducing the distance between turbines to 2.5 times of the rotor diameter (D) resulted in a reduction of the wind farm energy yield to 22.68, 21.498 and 21.5463 GWh/year for the M shape, Straight line and Arch shape, respectively. The energetic efficiency gain for the optimized wind turbines compared to the modeled layouts regarding the distances between the wind turbines. The energetic efficiency gain has been in the range between 8.9% for 5D (rotor diameter) straight layout to 15.9% for 2.5D straight layout

    Potential Study of Solar Thermal Cooling in Sub-Mediterranean Climate

    Get PDF
    Air conditioning is becoming increasingly important in the energy supply of buildings worldwide. There has been a dramatic increase in energy requirements for cooling buildings in the Middle East and North Africa (MENA) region. This is before taking the effects of climate change into account, which will also entail a sharp increase in cooling requirements. This paper presents the potential of using a solar thermal absorption cooling system in Sub-Mediterranean Climate. Four sites in Jordan are now equipped with water-lithium bromide (H2O-LiBr) absorption chillers with a total nominal capacity of 530 kW. The focus of the paper was on the pilot system at the German Jordanian University (GJU) campus with a cooling capacity of 160 kW. The system was designed and integrated in order to support two existing conventional compression chillers with a nominal cooling capacity of 700 kW. The system was economically evaluated based on the observed cooling capacity results with a Coefficient of Performance (COP) equals 0.32, and compared with the values observed for a COP of 0.79 which is claimed by the manufacturer. Several techniques were implemented to evaluate the overall economic viability in-depth such as present worth value, internal rate of return, payback period, and levelized cost of electricity. The aforementioned economic studies showed that the absorption cooling system is deemed not feasible for the observed COP of 0.32 over a lifespan of 25 years. The net present value was equal to −137,684 JD and a payback period of 44 years which exceeds the expected lifespan of the project. Even for an optimal operation of COP = 0.79, the discounted payback period was equal to 23 years and the Levelized Cost of Electricity (LCOE) was equal to 0.65 JD/kWh. The survey shows that there are several weaknesses for applying solar thermal cooling in developing countries such as the high cost of these systems and, more significantly, the lack of experience for such systems.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings

    Get PDF
    Based on recent developments and the predicted future advancement of lighting technologies, researchers are now questioning the extent to which daylight is effective in lowering the overall energy consumption of buildings. As light-emitting diode (LED) luminaires are highly energy efficient, the amount of power consumed for lighting purposes can be reduced, even in situations where the lighting system is at its full power. It has already been demonstrated that LED-lighting technologies can facilitate significant energy savings through minimizing window size (the main source of heat loss in buildings), and there is considerable potential for developing the LEDs’ source efficacy and lighting-product efficiency to ultimately achieve levels of efficacy of approximately 350 lumens per Watt (lm/W). For building designs to be sustainable in the future, it is critical that the windows-to-wall ratio (WWR) is optimized to minimize both heating and cooling loads, as well as the total energy consumed by the building for lighting, according to the efficiency of the LED, while still maintaining a suitable lighting level for occupants. This research examines the influence of the WWR on the total amount of energy consumed by standard buildings in Jordan using various LED luminaires (existing and projected efficiencies). DesignBuilder software was utilized to analyze the effect of LED-technology development on optimizing the WWR for a typical residential structure in Jordan. The research presents beneficial recommendations with respect to optimizing the WWR for primary decision-makers in the design of residential buildings with enhanced energy efficiency, considering the losses and gains associated with solar heat and light to capitalize on solar energy with no adverse impacts by windows size. The outcomes suggest a WWR of 17% could be achieved by typical residential buildings in Jordan that have extremely efficient LED lighting systems (350 lm/W), which is more than 50% less than the existing level of 40% recommended by multiple standards. Additionally, this study highlighted that when the efficiency of LED technologies increases, the energy demand of the building will be reduced because of lower energy usage combined with heat gain resulting from the LED efficiency

    Future of Electric and Hydrogen Cars and Trucks: An Overview

    Get PDF
    The negative consequences of toxic emissions from internal combustion engines, energy security, climate change, and energy costs have led to a growing demand for clean power sources in the automotive industry. The development of eco-friendly vehicle technologies, such as electric and hydrogen vehicles, has increased. This article investigates whether hydrogen vehicles will replace electric vehicles in the future. The results showed that fuel-cell cars are unlikely to compete with electric cars. This is due to the advancements in electric vehicles and charging infrastructure, which are becoming more cost-effective and efficient. Additionally, the technical progress in battery electric vehicles (BEVs) is expected to reduce the market share of fuel-cell electric vehicles (FCEVs) in passenger vehicles. However, significant investments have been made in hydrogen cars. Many ongoing investments seem to follow the sunk cost fallacy, where decision-makers continue to invest in an unprofitable project due to their already invested resources. Furthermore, even with megawatt charging, fuel-cell trucks cost more than battery-powered electric trucks. The use cases for fuel-cell electric trucks are also much more limited, as their running expenses are higher compared to electric cars. Hydrogen vehicles may be beneficial for heavy transport in remote areas. However, it remains to be seen if niche markets are large enough to support fuel-cell electric truck commercialization and economies of scale. In summary, we believe that hydrogen vehicles will not replace electric cars and trucks, at least before 2050

    The Significance of the Adaptive Thermal Comfort Practice over the Structure Retrofits to Sustain Indoor Thermal Comfort

    Get PDF
    Any building’s design should sustain thermal comfort for occupants and promote less energy usage during its lifetime using accurate building retrofits to convert existing buildings into low-energy buildings so that the heating and cooling loads can be minimized. Regarding the methodology adopted in this research, an energy model of an educational building located at the German Jordanian University in Jordan was constructed utilizing DesignBuilder computer software. In addition, it was calibrated utilizing real energy consumption data for a 12-month simulation of energy performance. Subsequently, a computerized evaluation of the roles of building envelope retrofits or the adaptive thermal comfort limits in the reduction of the overall building energy consumption was analyzed. The results of the study show that the current building’s external wall insulation, roof insulation, glazing, windows, and external shading devices are relatively energy-efficient but with high cost, resulting in significant financial losses, even though they achieved noticeable energy savings. For instance, equipping the building’s ventilation system with an economizer culminated in the highest financial profit, contributing to an annual energy savings of 155 MWh. On the other hand, in an occupant-centered approach, applying the adaptive thermal comfort model in wider ranges by adding 1 °C, 2 °C, and 3 °C to the existing operating temperatures would save a significant amount of energy with the least cost (while maintaining indoor thermal comfort), taking over any retrofit option. Using different adaptive thermal comfort scenarios (1 °C, 2 °C, and 3 °C) led to significant savings of around 5%, 12%, and 21%, respectively. However, using different retrofits techniques proved to be costly, with minimum energy savings compared to the adaptive approach

    Enhancing the Energy Efficiency of Buildings by Shading with PV Panels in Semi-Arid Climate Zone

    Get PDF
    Solar energy is one of the most abundant and available forms of renewable energy. Reliance on the electricity network can be decreased and net-zero energy achieved by mounting photovoltaic power on the tops of houses. Photovoltaic arrays can also change how the roof’s surface reacts to its environment. The influence of the structural system of a roof and weather on the energy consumption of a building is important. This research is concerned with focusing on the indirect effect of solar photovoltaic rooftop panels (shading effect) on the roof surface to see whether this effect is worth studying and calculating the total electrical load in the residential sector. Photovoltaic panels were modeled as a shading device, and the Integrated Environmental Solution-Virtual Environment Software was used to anticipate the monthly decline and growth in heating and cooling loads associated with the roof level. The influence of a photovoltaic system on a building’s roof-related energy load was measured concerning low-rise residential buildings in Mafraq city, which belongs to a mild dry-warm temperature zone. The findings indicated that a solar roof structure decreased heat loss by 4.85% in the summer and boosted heat transfer by 5.54% in the winter. The results highlight that renewable energy is very important in our times due to climate change and the increased demand for electricity by the residential sector, which is stimulated to find multiple ways to decrease and adapt to this change, and the aim of this paper helps to encourage to use solar energy by identifying the indirect effect of solar panels on building’s rooftops. This investigation also focuses on the value of offering essential instructions to who is concerned to the utilization of alternative energy to heat and cool structures, also will educate the public on a building’s total energy requirements, which is critical for future green structure design

    Potential Electricity Production by Installing Photovoltaic Systems on the Rooftops of Residential Buildings in Jordan: An Approach to Climate Change Mitigation

    Get PDF
    Countries with limited natural resources and high energy prices, such as Jordan, face significant challenges concerning energy consumption and energy efficiency, particularly in the context of climate change. Residential buildings are the most energy-consuming sector in Jordan. Photovoltaic (PV) systems on the rooftops of residential buildings can solve the problem of increasing electricity demands and address the need for more sustainable energy systems. This study calculated the potential electricity production from PV systems installed on the available rooftops of residential buildings and compared this production with current and future electricity consumption for residential households. A simulation tool using PV*SOL 2021 was used to estimate electricity production and a comparative method was used to compare electricity production and consumption. The results indicated that electricity production from PV systems installed on single houses and villas can cover, depending on the tilt angle and location of the properties, three to eight times their estimated future and current electricity use. PV installation on apartment buildings can cover 0.65 to 1.3 times their future and current electricity use. The surplus electricity produced can be used to mitigate urban energy demands and achieve energy sustainability

    The Significance of Occupants’ Interaction with Their Environment on Reducing Cooling Loads and Dermatological Distresses in East Mediterranean Climates

    Get PDF
    Global endeavors to respond to the problems caused by climate change and are leading to higher temperatures inside homes, which can cause skin conditions (such as eczema), lethargy, and poor concentration; disturbed sleep and fatigue are also rising. The energy performance of buildings is influenced by interactions and associations of numerous different variables, such as the envelope specifications as well as the design, technologies, apparatuses, and occupant behaviours. This paper introduces simple and sustainable strategies that are not dependent on expensive or sophisticated technologies, as they rely only on the actions practiced by the building’s occupants (movable window shading, and nighttime natural ventilation) instead of completely relying on high-cost mechanical cooling systems in buildings located in the main Eastern Mediterranean climates represented in the country of Jordan. These low-energy solutions could be applied to low-income houses in hot areas to avoid health problems, such as dermatological diseases, and save a significant amount of energy. The final results indicate that window shading has significant potential in reducing the cooling load in different climate zones. Natural ventilation exhibits high energy-saving abilities in climates that have cool nights, whereas its abilities in hot climates where nights are moderate is limited

    A Critical Review on Recycling Composite Waste Using Pyrolysis for Sustainable Development

    Get PDF
    The rising usage of carbon and glass fibers has raised awareness of scrap management options. Every year, tons of composite scrap containing precious carbon and glass fibers accumulate from numerous sectors. It is necessary to recycle them efficiently, without harming the environment. Pyrolysis seems to be a realistic and promising approach, not only for efficient recovery, but also for high-quality fiber production. In this paper, the essential characteristics of the pyrolysis process, their influence on fiber characteristics, and the use of recovered fibers in the creation of a new composite are highlighted. Pyrolysis, like any other recycling process, has several drawbacks, the most problematic of which is the probability of char development on the resultant fiber surface. Due to the char, the mechanical characteristics of the recovered fibers may decrease substantially. Chemically treating and post-heating the fibers both help to reduce char formation, but only to a limited degree. Thus, it was important to identify the material cost reductions that may be achieved using recovered carbon fibers as structural reinforcement, as well as the manufacture of high-value products using recycled carbon fibers on a large scale. Recycled fibers are cheaper than virgin fibers, but they inherently vary from them as well. This has hampered the entry of recycled fiber into the virgin fiber industry. Based on cost and performance, the task of the current study was to modify the material in such a way that virgin fiber was replaced with recycled fiber. In order to successfully modify the recycling process, a regulated optimum temperature and residence duration in post-pyrolysis were advantageous
    corecore